منابع مشابه
Some Properties and Regions of Variability of Affine Harmonic Mappings and Affine Biharmonic Mappings
Recommended by Narendra Kumar Govil We first obtain the relations of local univalency, convexity, and linear connectedness between analytic functions and their corresponding affine harmonic mappings. In addition, the paper deals with the regions of variability of values of affine harmonic and biharmonic mappings. The regions their boundaries are determined explicitly and the proofs rely on Schw...
متن کاملLipschitz Spaces and Harmonic Mappings
In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C, 0 < α ≤ 1, boundary is biLipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Ωj , j = 1, 2, with C, j = 1, 2 boundary is bi-Lipschitz.
متن کاملHarmonic Mappings of Spheres
Introduction and statement of results. This announcement describes an elementary method of constructing harmonic maps in some cases not covered by the general existence theory. Recall that given smooth Riemannian manifolds N and M, with N compact, then the energy functional E:H(N,M) -> R is defined on a suitable manifold of maps H(iV, M ) and is given by E{ f ) = \ \n \df | . A map ƒ is said to...
متن کاملJordan homomorphisms and harmonic mappings
We show that each Jordan homomorphism R→ R′ of rings gives rise to a harmonic mapping of one connected component of the projective line over R into the projective line over R′. If there is more than one connected component then this mapping can be extended in various ways to a harmonic mapping which is defined on the entire projective line over R. Mathematics Subject Classification (2000): 51C0...
متن کاملHarmonic Mappings between Riemannian
Harmonic mappings between two Riemannian manifolds is an object of extensive study, due to their wide applications in mathematics, science and engineering. Proving the existence of such mappings is challenging because of the non-linear nature of the corresponding partial differential equations. This thesis is an exposition of a theorem by Eells and Sampson, which states that any given map from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1975
ISSN: 0022-040X
DOI: 10.4310/jdg/1214433157